如图,在△ABC中,BD⊥AC于点D,,,并且.求的长.
用心算一算:
作图分析题 已知:∠AOB,点P在OA上,请以P为顶点,PA为一边作∠APC=∠O (不写作法,但必须保留作图痕迹)
如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0). (1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式; (2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由; (3)当t为何值时,△MNA是一个等腰三角形?
先阅读理解下面的例题,再按要求解答下列问题: 例题:解一元二次不等式x2﹣4>0 解:∵x2﹣4=(x+2)(x﹣2) ∴x2﹣4>0可化为 (x+2)(x﹣2)>0 由有理数的乘法法则“两数相乘,同号得正”,得 解不等式组①,得x>2, 解不等式组②,得x<﹣2, ∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2, 即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2. (1)一元二次不等式x2﹣16>0的解集为 ; (2)分式不等式的解集为 ; (3)解一元二次不等式2x2﹣3x<0.
如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D. (1)求证:AD平分∠BAC; (2)若BE=2,BD=4,求⊙O的半径.