已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为4,BE=2,求∠F的度数.
有首诗说的是《西游记》中孙悟空的故事: 悟空顺风探妖踪,千里只用四分钟;归时四分行六百,风速多少才算准。 根据以上内容求出风速是每分多少里?
当m取什么整数时,关于x的方程的解是正整数。
解方程:(每题4分,共16分) (1)--=1
已知抛物线的顶点为P(-4,-),与x轴交于A、B两点,与y轴交于点C,其中B点坐标为(1,0) (1)求这条抛物线的函数关系式; (2)若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ADQ为等腰三角形?若存在,请求出符合条件的点Q的坐标;若不存在,请说明理由.
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一个点)的路线是抛物线y=-x2+3x+1的一部分. (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?说明理由.