已知.(Ⅰ)当时,判断的奇偶性,并说明理由;(Ⅱ)当时,若,求的值;(Ⅲ)若,且对任何不等式恒成立,求实数的取值范围.
若函数,当x=2时,函数f(x)有极值. (1)求函数f(x)的解析式;(2)若函数f(x)=k有3个解,求实数k的取值范围.
已知是椭圆的两个焦点,是椭圆上的第一象限内的点,且.(1)求的周长;(2)求点的坐标.
(本小题満分10分)如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点. (Ⅰ)求直线AC与PB所成角的余弦值; (Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.
已知椭圆C:的一条准线L方程为:x=,且左焦点F到L的距离为. (Ⅰ)求椭圆C的方程; (Ⅱ)过点F的直线交椭圆C于两点A、B,交L于点M,若,,证明为定值.
已知,. (Ⅰ),求函数在区间上的最大值与最小值; (Ⅱ)若函数在区间和上都是增函数,求实数的取值范围.