如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
(本题共10分) 已知关于的方程, (1)若=1是此方程的一根,求的值及方程的另一根; (2)试说明无论取什么实数值,此方程总有实数根.
(本题10分) 山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答: (1)每千克核桃应降价多少元? (2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
(本题8分)先化简,再求值:,其中m是方程的根.
(本题10分)解方程: (1) (2)解方程(用配方法)
李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)
(1)到这个周末,李强有多少节余? (2)照这样,李强一个月(按30天计算)能有多少节余? (3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?