如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
某校为了解学生对三种国庆活动方案的意见,对该校学生进行了一次抽样调查(被调查学生至多赞成其中的一种方案),现将调查结果绘制成如图两幅不完整的统计图.请根据图中提供的信息解答下列问题 (1)这次共调查了多少名学生?扇形统计图中方案1所对应的圆心角的度数为多少度? (2)请把条形统计图补充完整; (3)已知该校有1000名学生,试估计该校赞成方案1的学生约有多少人?
如图,在正方形ABCD中,E、F分别是AB、BC上的点,且AE=BF.求证:CE=DF.
化简:
在△ABC中,∠A=90°,AB=8,AC=6,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.设AM=. (1)用含的代数式表示△MNP的面积S; (2)在动点M的运动过程中,记△MNP与梯形BCNM重合部分的面积为,试求关于的函数表达式,并求为何值时,的值最大,最大值是多少?
如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE。 (1)求证:AC=AE; (2)求△ACD外接圆的半径。