如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.
如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)AB=CD;(2)DP•BD=AD•BC;(3).
如图1,在平面直角坐标系中,抛物线交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.
如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上. (1)请直接写出线段BE与线段CD的关系: ; (2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<360°), ①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由; ②当AC=ED时,探究在△ABC旋转的过程中,是否存在这样的角α,使以A、B、C、D四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由.
(·辽宁辽阳)如图1,平面直角坐标系中,直线与抛物线相交于A,B两点,其中点A在x轴上,点B在y轴上.(1)求抛物线的解析式;(2)在抛物线上存在一点M,使△MAB是以AB为直角边的直角三角形,求点M的坐标;(3)如图2,点E为线段AB上一点,BE=2,以BE为腰作等腰Rt△BDE,使它与△AOB在直线AB的同侧,∠BED=90°,△BDE沿着BA方向以每秒一个单位的速度运动,当点B与A重合时停止运动,设运动时间为t秒,△BDE与△AOB重叠部分的面积为S,直接写出S关于t的函数关系式,并写出自变量t的取值范围.
(·辽宁辽阳)菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF. (1)如图1,当∠ABC=90°时,△OEF的形状是 ; (2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由; (3)在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且时,直接写出线段CE的长.