正方形ABCD和正方形DEFG如图①放置,保持正方形ABCD不动,将正方形DEFG绕点D顺时针旋转,旋转角为α(0°<α<180°)(1)当0°<α<90°时,如图②,连结AE、CG,则AE:CG= ;(2)当90°<α<180°时,如图③,连结AE、CG,(1)中的结论还成立吗?请说明理由;(3)将图③中的正方形ABCD和正方形DEFG分别改为矩形ABCD和矩形DEFG,且使AD=4,CD=6,ED=2,GD=3,如图④,求AE:CG的值.
七年级1班举办迎元旦庆新年歌咏会,购买了一些笔记本作为纪念品,若参加表演的同学每人分3本,则剩6本;若参加表演的同学每人分4本,则还差2本,问:(1)这个班共有多少名学生参加表演?(2)购买的笔记本共有多少本?
(1)由大小相同的边长为1小立方块搭成的几何体如图,请画出这个几何体的三视图并用阴影表示出来;. (2)根据三视图:这个组合几何体的表面积为 个平方单位.(包括底面积) (3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要 个小立方块,最多要 个小立方块.
先化简,再求值:(1),其中.(2),其中是同类项.
解方程: (1) (2)
阅读下列材料并解决有关问题: 我们知道, 现在我们可以用这一结论来化简含有绝对值 的代数式,如化简代数式|m+1|+|m-2|时,可令m+1=0和m-2=0,分别求得m=-1,m=2(称-1,2分别为|m+1|与|m-2|的零点值).在实数范围内,零点值m=-1和m=2可将全体实数分成不重复且不遗漏的如下3种情况: (1)m<-1;(2)-1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m-2|可分以下3种情况: (1)当m<-1时,原式=-(m+1)-(m-2)=-2m+1; (2)当-1≤m<2时,原式=m+1-(m-2)=3; (3)当m≥2时,原式=m+1+m-2=2m-1. 综上讨论,原式= 通过以上阅读,请你解决以下问题: (1)分别求出|x-5|和|x-4|的零点值; (2)化简代数式|x-5|+|x-4|. (3)求代数式|x-5|+|x-4|的最小值.