如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.(1)求点的轨迹曲线的方程;(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
已知函数f(x)=logax(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围.
比较下列各组数的大小.(1)log3与log5;(2)log1.1 0.7与log1.20.7;(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.
计算:(1)(2)2(lg)2+lg·lg5+;(3)lg-lg+lg.
已知函数f(x)=(ax-a-x) (a>0,且a≠1).(1)判断f(x)的单调性;(2)验证性质f(-x)=-f(x),当x∈(-1,1)时,并应用该性质求满足f(1-m)+f(1-m2)<0的实数m的范围.
已知函数f(x)=((1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明:f(x)>0.