如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.(1)求点的轨迹曲线的方程;(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
(本小题满分12分)已知数列的前项和为,且;数列满足,.. (Ⅰ)求数列,的通项公式; (Ⅱ)记,.求数列的前项和.
(本小题满分12分)如图,为正三角形,平面,,为的中点,,. (Ⅰ)求证:平面; (Ⅱ)求多面体的体积..
(本小题满分12分)口袋中装有除编号外其余完全相同的5个小球,编号依次为1,2,3,4,5.现从中同时取出两个球,分别记录下其编号为. (Ⅰ)求“”的概率; (Ⅱ)求“”的概率.
(本小题满分14分)已知函数,,其中且.为自然对数的底数. (Ⅰ)当时,求函数的单调区间和极小值; (Ⅱ)当时,若函数存在三个零点,且,试证明:; (Ⅲ)是否存在负数,对,,都有成立?若存在,求出的取值范围;若不存在,请说明理由.
(本小题满分13分)已知椭圆:()的右焦点为,且椭圆上一点到其两焦点的距离之和为. (Ⅰ)求椭圆的标准方程; (Ⅱ)设直线与椭圆交于不同两点,,且.若点满足,求的值.