三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。 (1)证明:平面PAB⊥平面PBC; (2)若PA=,PC与侧面APB所成角的余弦值为,PB与底面ABC成60°角,求二面角B―PC―A的大小。
风景秀美的凤凰湖畔有四棵高大的银杏树,记做A、B、P、Q,欲测量P、Q两棵树和A、P两棵树之间的距离,但湖岸部分地方围有铁丝网不能靠近,现在可以方便的测得A、B两点间的距离为米,如图,同时也能测量出,,,,则P、Q两棵树和A、P两棵树之间的距离各为多少?
已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆C的方程;(2)设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;(3)在(2)的条件下,证明直线与轴相交于定点.
在直角坐标系中,射线OA: x-y=0(x≥0),OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.(1)当AB中点为P时,求直线AB的方程;(2)当AB中点在直线上时,求直线AB的方程.
已知四棱锥P-ABCD的直观图(如图(1))及左视图(如图(2)),底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,PA=PB。(1)求证:AD⊥PB;(2)求异面直线PD与AB所成角的余弦值;(3)求平面PAB与平面PCD所成锐二面角的大小.
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(1)求双曲线C的方程;(2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.