如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=,且AB=2AD=2DC=2PD=4,E为PA的中点.(1)证明:DE∥平面PBC;(2)证明:DE⊥平面PAB.
(本小题满分14分)已知函数 (为实常数).(Ⅰ)当时,求函数的单调区间;(Ⅱ)若函数在区间上无极值,求的取值范围;(Ⅲ)已知且,求证: .
(本小题满分13分)已知数列{}中,对一切,点在直线y=x上, (Ⅰ)令,求证数列是等比数列,并求通项;(Ⅱ)求数列的通项公式;(Ⅲ)设的前n项和,是否存在常数,使得数列 为等差数列?若存在,试求出 若不存在,则说明理由.
(本小题满分12分)已知向量,设函数.(1)求的最小正周期与单调递减区间;(2)在中,、、分别是角、、的对边,若的面积为,求的值.
本小题满分12分)设函数在及时取得极值.(Ⅰ)求a、b的值(6分);(Ⅱ)若对于任意的,都有成立,求c的取值范围(6分)
(本小题满分12分)已知函数>0,>0,<的图象与轴的交点为(0,1),它在轴右侧的第一个最高点和第一个最低点的坐标分别为和(1)写出的解析式及的值;(2)若锐角满足,求的值.