已知函数,.(1)若,是否存在、,使为偶函数,如果存在,请举例并证明你的结论,如果不存在,请说明理由;(2)若,,求在上的单调区间;(3)已知,对,,有成立,求的取值范围.
如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点. (1)证明B1C1⊥CE; (2)求二面角B1CEC1的正弦值; (3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC. (1)求证:平面MOE∥平面PAC. (2)求证:平面PAC⊥平面PCB. (3)设二面角M—BP—C的大小为θ,求cos θ的值.
已知数列{an}的前n项和为Sn,且Sn=2an-2,数列{bn}满足b1=1,且bn+1=bn+2. (1)求数列{an},{bn}的通项公式; (2)设cn=an-bn,求数列{cn}的前2n项和T2n.
如图,三棱柱ABC—A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C. (1)求证:平面AA1B1B⊥平面BB1C1C; (2)若AB=2,求三棱柱ABC—A1B1C1的体积.
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1. (1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一结论; (2)求多面体ABCDE的体积.