设数列的前n项和为,已知,,数列是公差为d的等差数列,.(1)求d的值;(2)求数列的通项公式;(3)求证:.
求经过原点,且过两点的圆的方程.
求经过两条直线和的交点,且与直线平行的直线方程;
如图,在平面直角坐标系中,点,直线,设圆的半径为,圆心在上。 (1)若圆心也在直线上,过点作圆的切线,求切线的方程; (2)若圆上存在点,使,求圆心的横坐标的取值范围.
如图,已知二面角的大小为,菱形在面内,两点在棱上,,是的中点,面,垂足为. (1)证明:平面; (2)求异面直线与所成角的余弦值.
如图,在三棱锥中,平面平面,为等边三角形,且,,分别为,的中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面平面; (Ⅲ)求二面角的平面角的余弦值..