为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用年的隔热层,每厘米厚的隔热层建造成本为万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:)满足关系:(,为常数),若不建隔热层,每年能源消耗费用为万元.设为隔热层建造费用与年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值.
已知函数,在点处的切线方程为. (Ⅰ)求函数的解析式; (Ⅱ)若对于区间上任意两个自变量的值,都有,求实数的最小值; (Ⅲ)若过点,可作曲线的三条切线,求实数的取值范围.
已知椭圆C:的离心率为,其中左焦点. (Ⅰ)求出椭圆C的方程; (Ⅱ) 若直线与曲线C交于不同的A、B两点,且线段AB的中点M在圆上,求m的值.
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD, 且AC=AD=CD=DE=2,AB=1. (Ⅰ)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实; (Ⅱ)求多面体ABCDE的体积.
已知函数. (Ⅰ)时,求函数的定义域; (Ⅱ)若关于的不等式的解集是R,求的取值范围.
在△ABC中,角、、所对的边分别为、、,已知向量,且. (Ⅰ) 求角A的大小; (Ⅱ) 若,,求△ABC的面积.