证明题:如图以△ABC边AB为直径作⊙O交BC于D,已知BD=DC,⑴求证:△ABC是等腰三角形⑵若:∠A=36°,求弧AD的度数
因式分解:
已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD. 探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.图1 图2 图3
已知:如图,在□ EFGH中,点F的坐标是(-2,-1),∠EFG=45°.(1)求点H的坐标;(2)抛物线经过点E、G、H,现将向左平移使之经过点F,得到抛物线,求抛物线的解析式;(3)若抛物线与y轴交于点A,点P在抛物线的对称轴上运动.请问:是否存在以AG为腰的等腰三角形AGP?若存在,求出点P的坐标;若不存在,请说明理由.
已知: 反比例函数经过点B(1,1) .(1)求该反比例函数解析式;(2)联结OB,再把点A(2,0)与点B联结,将△OAB绕点O按顺时针方向旋转135°得到△O,写出的中点P的坐标,试判断点P是否在此双曲线上,并说明理由;(3)若该反比例函数图象上有一点F(m,)(其中m>0),在线段OF上任取一点E,设E点的纵坐标为n,过F点作FM⊥x轴于点M,联结EM,使△OEM的面积是,求代数式的值.
认真阅读下列问题,并加以解决: 问题1:如图1,△ABC是直角三角形,∠C =90º.现将△ABC补成一个矩形.要求:使△ABC的两个顶点成为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上.请将符合条件的所有矩形在图1中画出来; 图1 图2 问题2:如图2,△ABC是锐角三角形,且满足BC>AC>AB,按问题1中的要求把它补成矩形.请问符合要求的矩形最多可以画出 个,并猜想它们面积之间的数量关系是 (填写“相等”或“不相等”); 问题3:如果△ABC是钝角三角形,且三边仍然满足BC>AC>AB,现将它补成矩形.要求:△ABC有两个顶点成为矩形的两个顶点,第三个顶点落在矩形的一边上,那么这几个矩形面积之间的数量关系是 (填写“相等”或“不相等”).