如图,在长方体,中,,点在棱AB上移动.(Ⅰ)证明:; (Ⅱ)求点到平面的距离;(Ⅲ)等于何值时,二面角的大小为
(本小题满分13分)已知函数学科(1)求;(2)已知数列满足,,求数列的通项公式;(3) 求证:.
(本小题满分12分)已知的三边长成等差数列,若点的坐标分别为.(1)求顶点的轨迹的方程;(2)若线段的延长线交轨迹于点,当时求线段的垂直平分线与轴交点的横坐标的取值范围.
已知函数1)若函数;(2)设,若p是q的充分条件,求实数m的取值范围.
(本小题满分12分)已知直四棱柱ABCD—A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1 的中点,M为线段AC1的中点. (1)求证:直线MF∥平面ABCD; (2)求证:平面AFC1⊥平面ACC1A1; (3)求平面AFC1与与平面ABCD所成二面角的大小.
(本小题满分12分)学网某种家用电器每台的销售利润与该电器的无故障使用时间 (单位:年)有关. 若,则销售利润为元;若,则销售利润为元;若,则销售利润为元.设每台该种电器的无故障使用时间,及这三种情况发生的概率分别为,,,叉知,是方程的两个根,且(1)求,,的值;(2)记表示销售两台这种家用电器的销售利润总和,求的期望.