等比数列中,若公比,且前3项之和等于21,则该数列的通项公式 .
为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2的观测值k=≈4.844.则可以有 %的把握认为选修文科与性别有关系.
设Sn为数列{an}的前n项之和.若不等式对任何等差数列{an}及任何正整数n恒成立,则λ的最大值为 .
已知函数f(x)=x+sinx.项数为19的等差数列{an}满足an∈,且公差d≠0.若f(a1)+f(a2)+…+f(a18)+f(a19)=0,则当k= 时,f(ak)=0.
粗细都是1cm一组圆环依次相扣,悬挂在某处,最上面的圆环外直径是20cm,每个圆环的外直径皆比它上面的圆环的外直径少1cm. 那么从上向下数第3个环底部与第1个环顶部距离是 ;记从上向下数第n个环底部与第一个环顶部距离是an,则an= .
对于数列{an},规定{△1an}为数列{an}的一阶差分数列,其中△1an=an+1﹣an(n∈N*).对于正整数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k﹣1an+1﹣△k﹣1an.若数列{an}有a1=1,a2=2,且满足△2an+△1an﹣2=0(n∈N*),则a14= .