如图所示,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明:B1C1⊥CE;(2)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为.求线段AM的长.
如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点. (1)求证:EF∥平面ABC1D1. (2)求证:EF⊥B1C. (3)求三棱锥B1-EFC的体积.
递增等比数列{an}满足a2+a3+a4=28,且a3+2是a2和a4的等差中项. (1)求数列{an}的通项公式; (2)若,求数列{bn}的前n项和.
从高三抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.由于一些数据丢失,试利用频率分布直方图求: (1)这50名学生成绩的众数与中位数. (2)这50名学生的平均成绩.
在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y. (1)求函数y=f(x)的解析式和定义域; (2)求y的最大值.
已知点在函数的图象上,且(). (Ⅰ)试确定函数在区间上的单调性,并证明; (Ⅱ)证明:.