计算题(1) (2)
为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为: A .唐诗; B .宋词; C .论语; D .三字经.比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
解不等式组: 2 x − 4 ⩽ 0 3 − x 2 < x ,并把解集在数轴上表示出来.
某校300名学生参加植树活动,要求每人植树 2 − 5 棵,活动结束后随机抽查了20名学生每人的植树量,并分为四类: A 类2棵、 B 类3棵、 C 类4棵、 D 类5棵,将各类的人数绘制成不完整的条形统计图(如图所示),回答下列问题:
(1) D 类学生有多少人?
(2)估计这300名学生共植树多少棵?
如图,方格图中每个小正方形的边长为1,点 A 、 B 、 C 都是格点.
(1)画出 ΔABC 关于直线 BM 对称的△ A 1 B 1 C 1 ;
(2)写出 A A 1 的长度.
如图1, ΔABC 是边长为 4 cm 的等边三角形,边 AB 在射线 OM 上,且 OA = 6 cm ,点 D 从 O 点出发,沿 OM 的方向以 1 cm / s 的速度运动,当 D 不与点 A 重合时,将 ΔACD 绕点 C 逆时针方向旋转 60 ° 得到 ΔBCE ,连接 DE .
(1)求证: ΔCDE 是等边三角形;
(2)如图2,当 6 < t < 10 时, ΔBDE 的周长是否存在最小值?若存在,求出 ΔBDE 的最小周长;若不存在,请说明理由;
(3)如图3,当点 D 在射线 OM 上运动时,是否存在以 D 、 E 、 B 为顶点的三角形是直角三角形?若存在,求出此时 t 的值;若不存在,请说明理由.