已知数列的各项均为正数,其前项和为,且.⑴求证:数列是等差数列;⑵设,求证:;⑶设,,求.
扇形AOB中心角为60°,所在圆半径为,它按如下(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.(Ⅰ)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设∠EOB=θ;(Ⅱ)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设∠EOM=;试研究(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?
甲、乙二人参加知识竞赛活动,组委会给他们准备了难、中、易三种题型,其中容易题两道,分值各10分,中档题一道,分值20分,难题一道,分值40分,二人需从4道题中随机抽取一道题作答(所选题目可以相同)(Ⅰ)求甲、乙所选题目分值不同的概率;(Ⅱ)求甲所选题目分值大于乙所选题目分值的概率.
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
已知=(2,3),=(﹣1,2)当k为何值时,(Ⅰ)与垂直?(Ⅱ)与平行?平行时它们是同向还是反向?
已知cos(π+α)=,α为第三象限角.(1)求,的值;(2)求sin(α+),tan2α的值.