设 (1)如果在处取得最小值,求的解析式;(2)如果,的单调递减区间的长度是正整数,试求和的值.(注:区间的长度为)
某班有48名同学,一次考试后数学成绩服从正态分布.平均分为80,标准差为10,问从理论上讲在80分至90分之间有多少人?
若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在1%以下设计的,如果某地成年男子的身高(单位:㎝),则该地公共汽车门的高度应设计为多高?
已知:从某批材料中任取一件时,取得的这件材料强度服从 (1)计算取得的这件材料的强度不低于180的概率. (2)如果所用的材料要求以99%的概率保证强度不低于150,问这批材料是否符合这个要求.
设服从试求: (1)(2) (3)(4)
设服从,求下列各式的值: (1)(2)(3)