已知(1)若时,求函数在点处的切线方程;(2)若函数在上是减函数,求实数的取值范围;(3)令是否存在实数,当是自然对数的底)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由.
等比数列中,已知.(1)求数列的通项公式及前项和.(2)记,求的前项和.
(1)已知,其中,求的最小值,及此时与的值.(2)关于的不等式,讨论的解.
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
一盒中共装有除颜色外其余均相同的小球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1个球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.
已知A、B、C三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A、B、C三个箱子中各摸出1个球.(1)若用数组(x,y,z)中的x,y,z分别表示从A、B、C三个箱子中摸出的球的号码,请写出数组(x,y,z)的所有情形,并回答一共有多少种;(2)如果请您猜测摸出的这三个球的号码之和,猜中有奖,那么猜什么数获奖的可能性最大?请说明理由.