在平面直角坐标系中,四边形ABCD的位置如图所示,解答下列问题:(1)将四边形ABCD先向左平移4个单位,再向下平移6个单位,得到四边形A1B1C1D1,画出平移后的四边形A1B1C1D1;(2)将四边形A1B1C1D1绕点A1逆时针旋转90°,得到四边形A1B2C2D2,画出旋转后的四边形A1B2C2D2,并写出点C2的坐标.
已知二次函数. (1)求此二次函数图像与x轴交点A、B(A在B的左边)的坐标; (2)若此二次函数图像与y轴交于点C、且△AOC∽△COB(字母依次对应). ①求a的值; ②求此时函数图像上关于原点中心对称的两个点的坐标.
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化. 类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时 sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的. 根据上述对角的正对定义,解下列问题: (1)sad 的值为(▼)
(2)对于,∠A的正对值sad A的取值范围是▼ . (3)已知,其中为锐角,试求sad的值.
如图,在△ABC中,∠ACB=,D是AB延长线上一点,且BD=BC,CE⊥CD交AB于E. (1)求证:△ACE∽△ADC; (2)若BE∶EA=3∶2,求sin∠A的值.
如图,梯形ABCD中,AB‖CD,且AB∶CD=4∶3,E是CD的中点,AC与BE交于点F. (1)求的值; (2)若,请用来表示
已知二次函数的图像经过点与. (1)求此函数的解析式; (2)用配方法求此函数图像的顶点坐标.