如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.
(每小题7分,共14分) (1)计算:︱—2︱—(1+)0+;x+3>0 (2)解不等式组: 3(x-1)≤2x-1
(满分l4分)已知:抛物线y=x2-(a+2)x+9的顶点在坐标轴上. (1)求a的值; (2)若该抛物线的顶点C在x轴的正半轴上,而此抛物线与直线Y=x+9交于A,B两点,且A点在B点左侧,P为线段AB上的点(A,B两端点除外).过点P作x轴的垂线与抛物线交于点Q(可在图中画示意图).问: ①线段AB上是否存在这样的点P,使得PQ的长等于6?若存在,请求出点P的坐标;若不存在,请说明理由. ②线段AB上是否存在这样的点P,使得△ABQ∽△OAC?若存在,请求出此时点Q的坐标;若不存在,请说明理由.
(满分l2分)已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°. (1)求∠EBC的度数; (2)求证:BD=CD.
(满分l2分)某中学对全校学生60s跳绳的次数进行了统计,全校学生的平均次数是l00次.某班体育委员统计了全班50名学生60s跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点). (1)该班60s跳绳的平均次数是多少?是否超过全校的平均次数? (2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围. (3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?
(满分l2分)暑假期间,小明和父母一起开车到距家200 km的景点旅游.出发前,汽车油箱内储油45L;当行驶l50 km时,发现油箱剩余油量为30 L. (1)已知油箱内余油量y(L)是行驶路程x(km)的一次函数,求y与x的函数关系式; (2)当油箱中余油量少于3 L时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.