已知函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)当时,不等式恒成立,求实数的取值范围.(Ⅲ)求证:(,e是自然对数的底数).
在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为. (1)求圆C的极坐标方程; (2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线的参数方程为(t为参数),直线与圆C相交于A,B两点,已知定点,求|MA|·|MB|.
如图,是⊙的直径,是⊙的切线,与的延长线交于点,为切点.若,,的平分线与和⊙分别交于点、,求的值.
设函数 (1)若关于x的不等式在有实数解,求实数m的取值范围; (2)设,若关于x的方程至少有一个解,求p的最小值. (3)证明不等式:
已知圆,若椭圆的右顶点为圆的圆心,离心率为. (1)求椭圆C的方程; (2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.
如图,四棱锥中,底面为平行四边形,,,⊥底面. (1)证明:平面平面; (2)若二面角为,求与平面所成角的正弦值.