某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过600元,求这所中学最多可以购买多少个篮球?
(成都)(本小题满分10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90. (1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF. i)求证:△CAE∽△CBF; ii)若BE=1,AE=2,求CE的长; (2)如图②,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值; (3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
(乐山)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E. (1)求证:△DCE≌△BFE; (2)若CD=2,∠ADB=30°,求BE的长.
(巴中)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点). (1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1; (2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2; (3)线段B1C1变换到B1C2的过程中扫过区域的面积为 .
(广安)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.
(绵阳)如图,反比例函数()与正比例函数相交于A(1,k),B(﹣k,﹣1)两点. (1)求反比例函数和正比例函数的解析式; (2)将正比例函数的图象平移,得到一次函数的图象,与函数()的图象交于C(,),D(,),且,求b的值.