已知:如图,AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.(1)求证:DE为⊙O的切线.(2)求证:AB:AC=BF:DF.
为了调查某校全体初中生的视力变化情况,统计了每位初中生连续三年视力检查的结果(如图1),并统计了2010年全校初中生的视力分布情况(如图2、3).
图2
从图1提供的信息用统计知识,预测2012年全校学生的视力在4.9及以下的学生人数(从一个角度预测即可);
把4张普通扑克牌;方块3,红心6,黑桃10,红心6,洗匀后正面朝下放在桌面上.从中随机抽取一张牌是黑桃的概率是多少?从中随机抽取一张,再从剩下的牌中随机抽取另一张. 请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽出一对6的概率.
在平面直角坐标中,直角三角板,将直角顶点放在点(,1)处,∥,求经过点C的反比例函数的解析式.
如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.当t为何值时,点M与点O重合.求点P坐标和等边△PMN的边长(用t的代数式表示).如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN和矩形ODEF重叠部分的面积为S,请求出当秒时S与的函数关系式,并求出S的最大值.
两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作: 如图1,△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,四边形CDBF面积为 ▲ ;如图2,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.如图3,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出sin∠AED的值.