如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.
小明和小亮用如图所示的两个转盘做游戏,转动两个转盘各一次。若两次数字和为奇数,则小明得1分;而若和为偶数,则小亮得1分。这个游戏对双方公平吗?为什么?(请用列表法说明理由)。如果不公平,如何修改规则,使游戏对双方都公平。
如图,Rt△ABO的顶点A是双曲线与直线在第二象限的交点,AB⊥轴于B,且。求这两个函数的解析式。
已知:如图,在△ABC中,∠ACB= 900, CD⊥AB,垂足是D,BC=,BD=1。求CD,AD的长。
在下图的圆圈里有5个实数,请计算其中有理数的和与无理数的积的差。
阅读下列材料,并解决后面的问题。 材料:一般的,个相同的因数相乘:记为,如,此时,3叫做以2为底8的对数,记为(即)。一般的,若(且,),则叫做以为底的对数,记为(即),如,则4叫做以3为底81的对数,记为(即)。 问题:(1)计算以下各对数的值:,,; (2)观察(1)中三数4、16、64之间满足怎样的关系式?、、之间又满足怎样的关系式? (3)由(2)的结果,你能归纳出一个一般性的结论吗?(且,);