在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.
已知函数. (1)求函数在上的最大值、最小值; (2)当,比较与的大小. (3)求证:.
(本小题满分12分)已知直线与椭圆相交于、两点. (1)若椭圆的离心率为,焦距为,求线段的长; (2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.
(本小题满分12分)如图,四边形是正方形,平面,,,、、分别为、、的中点. (1)求证:平面; (2)求平面与平面所成锐二面角的大小.
(本小题满分12分)一个口袋中装有大小形状完全相同的红色球1个、黄色球2个、蓝色球个,现进行从口袋中摸球的游戏:摸到红球得1分、摸到黄球得2分、摸到蓝球得3分.若从这个口袋中随机的摸出2个球,恰有一个是黄色球的概率是. (1)求n的值; (2)从口袋中随机摸出2个球,设表示所摸2球的得分之和,求的分布列和数学期望.
(本小题满分12分)设数列的前项和满足:,等比数列的前项和为,公比为,且. (1)求数列的通项公式; (2)设数列的前项和为,求证:.