如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切与点B,连接BA并延长交⊙A于点D,交ON于点E.(1)求证:ON是⊙A的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)
如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转900,得到△DOC。抛物线y=ax2+bx+c经过点A、B、C。 (1)求抛物线的解析式; (2)若点P是第二象限内抛物线上的动点,其横坐标为t。 ①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F。求出当△CEF与△COD相似时点P的坐标; ②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD面积的最大值;若不存在,请说明理由。
如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D. (1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值? (2)求一次函数解析式及m的值; (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点, (1)求证:AC2=AB•AD; (2)求证:CE∥AD; (3)若AD=4,AB=6,求的值.
如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)
已知如图所示,AB为⊙O的直径,C、D是半圆弧上的两点,E是AB上除0外的一点,AC与DE相交于点F.①=.②DEAB,③AF=DF. (1)写出以“①②③中的任意两个为条件,推出第三个(结论)”的一个正确命题,并加以证明; (2)以“①②③中的任意两个为条件,推出第三个(结论)”可以组成多少个正确的命题?(1)中的除外,不必说明理由)