已知、是椭圆的左、右焦点,且离心率,点为椭圆上的一个动点,的内切圆面积的最大值为.(1) 求椭圆的方程;(2) 若是椭圆上不重合的四个点,满足向量与共线,与共线,且,求的取值范围.
已知矩阵A=,向量α=. (1)求A的特征值λ1,λ2和对应的特征向量α1,α2. (2)计算A5α的值.
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换. (1)求矩阵M的特征值及相应的特征向量. (2)求逆矩阵M-1以及椭圆+=1在M-1的作用下的新曲线的方程.
已知矩阵M=,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0), (1)求实数a的值. (2)求矩阵M的特征值及其对应的特征向量.
求矩阵M=的特征值和特征向量.
已知2×2矩阵A有特征值λ1=3及其对应的一个特征向量α1=,特征值λ2=-1及其对应的一个特征向量α2=,求矩阵A的逆矩阵A-1.