《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样的一道题目:把个面包分给个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小份为( )
动点在圆上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间时,点的坐标是,则当时,动点的纵坐标关于(单位:秒)的函数的单调递增区间是( )
在中,是边的中点,角的对边分别是,若,则的形状为( )
设P为曲线上的点,且曲线C在点P处的切线的倾斜角的取值范围为,则点P的横坐标的取值范围为( )
将函数的图象向左平移个单位(),是所得函数的图象的一个对称中心,则的最小值为( )
已知向量,则向量与的夹角为( )