如图,在平面直角坐标系中,点,直线,设圆的半径为,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.
如图,在圆上任取一点P,过点P作轴的垂线PD,D为垂足,当点P在圆上运动时,求线段PD的中点的轨迹方程.
如图,正方形与等腰直角△ACB所在的平面互相垂直,且AC=BC=2,, F、G分别是线段AE、BC的中点.求与所成的角的余弦值.
已知函数的减区间是. ⑴试求m、n的值; ⑵求过点且与曲线相切的切线方程; ⑶过点A(1,t)是否存在与曲线相切的3条切线,若存在求实数t的取值范围;若不存在,请说明理由.
设椭圆M:(a>b>0)的离心率与双曲线的离心率互为倒数,且内切于圆. (1)求椭圆M的方程; (2)若直线交椭圆于A、B两点,椭圆上一点, 求△PAB面积的最大值.
如图,在六面体中,平面∥平面,平面,,,∥,且,. (1)求证:平面平面; (2)求证:∥平面; (3)求三棱锥的体积.