如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).(1)求a的值和抛物线的顶点坐标;(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;(3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.
如图,在△ABC中,∠B>∠C,AD⊥BC,垂足为D,AE平分∠BAC. (1)已知∠B=60°,∠C=30°,求∠DAE的度数; (2)已知∠B=3∠C,求证:∠DAE=∠C.
小明有1元和5角的硬币共15枚,其中1元的硬币不少于2枚,这些硬币的总币值少于10元.问小明可能有几枚1元的硬币?
看图填空: 已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.求证:AD平分∠BAC. 证明:∵AD⊥BC,EF⊥BC(已知) ∴∠ADC=90°,∠EFC=90°(垂线的定义) ∴ = ∥ ∴∠1= ∠2= ∵∠1=∠2(已知) ∴= ∴AD平分∠BAC(角平分线定义)
解不等式:1-<
解方程组