一透明的敞口正方体容器ABCD -A′B′C′D′ 装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α (∠CBE = α,如图1所示).
探究 如图1,液面刚好过棱CD,并与棱BB′ 交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如
图2所示.解决问题:
(1)CQ与BE的位置关系是 ,BQ的长是 dm;
(2)求液体的体积;(参考算法:直棱柱体积V液 = 底面积SBCQ×高AB)
(3)求α的度数.(注:sin49°=cos41°=,tan37°=)
拓展 在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.
延伸 在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.