如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.
如图,△ABC是格点三角形,且A(-3,-2),B(-2,-3),C(1,-1). (1)请在图中画出△ABC关于y轴的对称△A’B’C’. (2)写出△A’B’C’各点坐标,并计算△A’B’C’的面积.
计算:.
先化简,再求值: ,其中x = -2,y = .
分解下列因式: (1).(2).
问题1:如图1,在四边形ABCD中,AD∥BC,∠A=∠D,AB=BC=CD,点M,N分别在AD,CD上,若∠MBN=∠ABC,试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想,不用证明; 问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD的延长线上,若∠MBN=∠ABC仍然成立,请你进一步探究线段MN,AM,CN又有怎样的数量关系?写出你的猜想,并给予证明. 解:(1)猜想:____________________ (2)猜想:____________________ 证明: