已知 (1)求的最小值(2)由(1)推出的最小值C(不必写出推理过程,只要求写出结果)(3)在(2)的条件下,已知函数若对于任意的,恒有成立,求的取值范围.
已知关于的方程=1,其中为实数. (1)若=1-是该方程的根,求的值. (2)当>且>0时,证明该方程没有实数根.
用数学归纳法证明:
已知下列方程(1),(2),(3)中至少有一个方程有实根,求实数的取值范围.
已知A(,),B(,)是函数的图象上的任意两点(可以重合),点M在直线上,且. (1)求+的值及+的值 (2)已知,当时,+++,求; (3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、, 使得不等式成立,求和的值.
已知点是椭圆的右焦点,点、分别是轴、轴上的动点,且满足.若点满足. (Ⅰ)求点的轨迹的方程; (Ⅱ)设过点任作一直线与点的轨迹交于、两点,直线、与直线分别交 于点、(为坐标原点),试判断是否为定值?若是,求出这个定值;若不是, 请说明理由.