设等差数列 a n 的前 n 项和为 S n ,且 S 4 = 4 S 2 , a 2 n = 2 a n + 1 . (Ⅰ)求数列 a n 的通项公式; (Ⅱ)设数列 b n 满足 b 1 a 1 + b 2 a 2 + … + b n a n = 1 - 1 2 n n ∈ N ,求 b n 的前 n 项和 T n .
用分析法或综合法证明:>2
已知某曲线C的参数方程为,(t为参数,a∈R)点M(5,4)在该曲线上,(1)求常数a;(2)求曲线C的普通方程。
已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (1)求椭圆C的方程; (2)设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围; (3)在(2)的条件下,证明直线与轴相交于定点.
在直角坐标系中,射线OA: x-y=0(x≥0),OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点. (1)当AB中点为P时,求直线AB的方程; (2)当AB中点在直线上时,求直线AB的方程.
已知四棱锥P-ABCD的直观图(如图(1))及左视图(如图(2)),底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,PA=PB。 (1)求证:AD⊥PB; (2)求异面直线PD与AB所成角的余弦值; (3)求平面PAB与平面PCD所成锐二面角的大小.