设 D , E 分别是 ∆ A B C 的边 A B , B C 上的点, A D = 1 2 A B , B E = 2 3 B C . 若 D E ⇀ = λ 1 A B ⇀ + λ 2 A C ⇀ ( λ 1 λ 2 为实数),则 λ 1 + λ 2 的值是.
(本小题满分14分) 已知数列是首项的等比数列,其前项和中,,成等差数列, (1)求数列的通项公式; (2)设,若,求证:.
设A和B是抛物线上的两个动点,且在A和B处的抛物线切线相互垂直, 已知由A、B及抛物线的顶点P所成的三角形重心的轨迹也是一抛物线, 记为L1.对重复以上过程,又得一抛物线L2,以此类推.设如此得到抛物线的序列为L1,L2,…, Ln,若抛物线的方程为,经专家计算得,,,. 则=▲
已知,则的最大值与最小值的差为▲.
已知上有两个不同的零点,则m的取值范围为▲.
设二次函数(),若对所有的实数,都有成立,则=▲.