已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果,求出相应的相似比;(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.
已知:如图, AC∥DF,直线AF分别与直线BD、CE 相交于点G、H,∠1=∠2, 求证: ∠C=∠D. 解:∵∠1=∠2(已知) ∠1=∠DGH(), ∴∠2=_________(等量代换) ∴// ___________( 同位角相等,两直线平行) ∴∠C=__( 两直线平行,同位角相等 ) 又∵AC∥DF() ∴∠D=∠ABG () ∴∠C=∠D ( )
与在平面直角坐标系中的位置如图. ⑴分别写出下列各点的坐标:; ;; ⑵说明由经过怎样的平移得到 . ⑶若点(,)是内部一点,则平移后内的对应点的坐标为; ⑷求的面积.
∠1=∠2,∠1+∠2=162°,求∠3与∠4的度数.
如下图,这是某市部分简图,已知医院的坐标为(一2,一2),请建立平面直角坐标系,分别写出其余各地的坐标.
如图,∠1=∠2,∠3=100°,求∠4的度数.