已知(Ⅰ)求的值; (Ⅱ)求的值.
已知向量(),向量,,且.(Ⅰ)求向量; (Ⅱ)若,,求.
已知函数.(Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间;(Ⅱ)若对于都有成立,试求的取值范围;(Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.
已知数列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).数列{bn}的前n项和为Sn,其中b1=-,bn+1=-Sn(n∈N*).(1)求数列{an}和{bn}的通项公式;(2)若Tn=++…+,求Tn的表达式.
已知椭圆的的右顶点为A,离心率,过左焦点作直线与椭圆交于点P,Q,直线AP,AQ分别与直线交于点.(Ⅰ)求椭圆的方程;(Ⅱ)证明以线段为直径的圆经过焦点.
已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点.(1)证明:;(2)判断并说明上是否存在点,使得∥平面;(3)若与平面所成的角为,求二面角的余弦值.