设O为坐标原点,点M的坐标为(2,1),若点满足不等式组,则使取得最大值的点N有
已知f(x)为R上的可导函数,且满足f(x)>f′(x),对任意正实数a,下面不等式恒成立的是( )
已知定义在(0,+∞)上的单调函数f(x),对∀x∈(0,+∞),都有f[f(x)﹣log3 x]=4,则函数g(x)=f(x﹣1)﹣f′(x﹣1)﹣3的零点所在区间是( )
已知任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有对称中心M(x0,f(x0)),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x)=0.若函数f(x)=x3﹣3x2,则f()+f()+f()+…+f()=( )
已知f(x)是定义在(0,+∞)上的单调函数,f′(x)是f(x)的导函数,若对∀x∈(0,+∞),都有f[f(x)﹣2x]=3,则方程f′(x)﹣=0的解所在的区间是( )
已知函数f(x)=lnx+tanα(α∈(0,))的导函数为f′(x),若使得f′(x0)=f(x0)立的x0<1,则实数α的取值范围为( )