国庆节期间,某公园游戏场举行一场活动.有一种游戏规则是:在一个装有8个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个世博会吉祥物海宝玩具.已知参加这种游戏的儿童有40000人,公园游戏场发放海宝玩具8000个.(1)求参加此次活动得到海宝玩具的频率?(2)请你估计袋中白球的数量接近多少?
如图,已知:在等边△ABC中,D、E分别在AB、AC上,且AD=CE,BE、CD相交于点P. (1)说明△ADC≌△CEB的理由; (2)求∠BPC的度数.
如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?说明你作出判断的理由.
如图,线段OD的一个端点O在直线a上,以OD为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能画多少个?(并用直尺与圆规画出相应的等腰三角形)
如图,∠1=100°,∠2=100°,∠3=120°,填空: ∵∠1=∠2=100°(已知) ∴ _______ ∥ _______ (内错角相等,两直线平行) ∴∠ ______ =∠ _____ (两直线平行,同位角相等) 又∵∠3=120°(已知) ∴∠4= _____ 度.
如图①所示,已知、为直线上两点,点为直线上方一动点,连接、,分别以、为边向外作正方形和正方形,过点作于点,过点作于点. (1)如图②,当点恰好在直线上时(此时与重合),试说明; (2)在图①中,当、两点都在直线的上方时,试探求三条线段、、之间的数量关系,并说明理由; (3)如图③,当点在直线的下方时,请直接写出三条线段、、之间的数量关系.(不需要证明)