已知,直线,为平面上的动点,过点作的垂线,垂足为点,且.(Ⅰ)求动点的轨迹曲线的方程;(Ⅱ)设动直线与曲线相切于点,且与直线相交于点,试问:在轴上是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量.(注:总收益=总成本+利润)(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
已知x0,x0+是函数f(x)=cos2-sin2ωx(ω>0)的两个相邻的零点.(1)求f的值;(2)若对∀x∈,都有|f(x)-m|≤1,求实数m的取值范围.
已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<α<x<π.(1)若α=,求函数f(x)=b·c的最小值及相应x的值;(2)若a与b的夹角为,且a⊥c,求tan 2α的值.
已知函数f(x)=2sin(2ωx+φ)(ω>0,φ∈(0,π))的图象中相邻两条对称轴间的距离为,且点是它的一个对称中心.(1)求f(x)的表达式;(2)若f(ax)(a>0)在上是单调递减函数,求a的最大值.
已知函数f(x)=2sin xcos x+2cos2x-,x∈R.(1)求函数f(x)的最小正周期;(2)在锐角△ABC中,若f(A)=1,·=,求△ABC的面积.