口袋中有5个大小相同的小球,其中1个小球标有数字“3”,2个小球标有数字“2”,2个小球标有数字“1”,每次从中任取一个小球,取后不放回,连续抽取两次。(I)求两次取出的小球所标数字不同的概率;(II)记两次取出的小球所标数字之和为X,求事件的概率。
(本题满分12分)在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。 (1)求以线段AB、AC为邻边的平行四边形两条对角线的长 (2)设实数t满足()·=0,求t的值
(本小题满分10分)选修4-5:不等式选讲 已知函数 (Ⅰ)若,解不等式; (Ⅱ)如果,求的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线。 (Ⅰ)将曲线的参数方程化为普通方程; (Ⅱ)若把曲线上各点的坐标经过伸缩变换后得到曲线,求曲线上任意一点到两坐标轴距离之积的最大值.
请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. (本小题满分10分)选修4-1:几何证明选讲 如图,是⊙O的一条切线,切点为,都是⊙O的割线,已知证明: (Ⅰ); (Ⅱ)
(本小题满分12分) 设,,,根据等差数列前n项和公式知;且,,, 猜想,即 (Ⅰ)请根据以上方法推导的公式; (Ⅱ)利用数学归纳法证明以上结论.