已知:直线交轴于点,交轴于点,抛物线经过、、(1,0)三点.(1)求抛物线的解析式;(2)若点的坐标为(-1,0),在直线上有一点,使与相似,求出点的坐标;(3)在(2)的条件下,在轴下方的抛物线上,是否存在点,使的面积等于四边形的面积?如果存在,请求出点的坐标;如果不存在,请说明理由.
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题: (1)画线段AD∥BC且使AD =BC,连接CD; (2)线段AC的长为,CD的长为,AD的长为; (3)△ACD为三角形,四边形ABCD的面积为; (4)若E为BC中点,则tan∠CAE的值是.
某生态示范园要对1号、2号、3号、4号四个新品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广.通过实验得知:3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出). (1)实验所用的2号果树幼苗的数量是_______株; (2)求出3号果树幼苗的成活数,并把图2的统计图补充完整; (3)你认为应选哪一种果树幼苗进行推广?请通过计算说明理由.
(本题满分8分)
(本小题满分9分,其中(1)小题4分,(2)小题5分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价) (1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件? (2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?
(本小题满分9分,其中(1)小题5分,(2)小题4分)如图4:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足,且c是不等式组的最大整 数解. (1)求a、b、c的长. (2)若AE平分△ABC的周长,求∠BEA的大小.