如图,已知抛物线的焦点在抛物线上.(1)求抛物线的方程及其准线方程;(2)过抛物线上的动点作抛物线的两条切线、, 切点为、.若、的斜率乘积为,且,求的取值范围.
设是定义在R上的偶函数,其图象关于对称,对任意的,都有,且(1)求;(2)证明:是周期函数。
已知函数 .(I)若函数的图象过原点,且在原点处的切线斜率是,求的值;(II)若函数在区间上不单调,求的取值范围.
已知函数求的单调区间; 若在处取得极值,直线与的图象有三个不同的交点,求的取值范围。
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:.已知甲、乙两地相距100千米(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
已知是方程的两根(Ⅰ)求的值 (II)求的值