如图,是半圆的直径,是半圆上除、外的一个动点,平面,,,,.⑴证明:平面平面;⑵试探究当在什么位置时三棱锥的体积取得最大值,请说明理由并求出这个最大值.
(本小题满分14分)已知锐角中的三个内角分别为. (1)设·=·,求证:是等腰三角形; (2)设向量=(2sinC, -), =(cos2C, 2cos2 -1), 且∥, 若sinA=,求sin(-B)的值.
(本小题满分14分) 已知数列,满足,其中. (Ⅰ)若,求数列的通项公式; (Ⅱ)若,且. (ⅰ)记,求证:数列为等差数列; (ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次. 求首项应满足的条件.
(本小题满分14分) 已知函数. (Ⅰ)若曲线在和处的切线互相平行,求的值; (Ⅱ)求的单调区间; (Ⅲ)设,若对任意,均存在,使得,求的取值范围.
(本小题满分13分) 已知椭圆()的右焦点为,离心率为. (Ⅰ)若,求椭圆的方程; (Ⅱ)设直线与椭圆相交于,两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围.
(本小题满分13分) 一个袋中装有个形状大小完全相同的小球,球的编号分别为. (Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率; (Ⅱ)若从袋中每次随机抽取个球,有放回的抽取3次,求恰有次抽到号球的概率; (Ⅲ)若一次从袋中随机抽取个球,记球的最大编号为,求随机变量的分布列.