列方程解应用题: 某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由。
如图,在矩形ABCD中,AB=8,BC=6,点O为对角线BD的中点,点P从点A出发,沿折线AD-DO以每秒1个单位长度的速度向终点O运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒). (1)求点N落在BD上时t的值; (2)直接写出点O在正方形PQMN内部时t的取值范围; (3)当点P在折线AD-DO上运动时, ①求S与t之间的函数关系式; ②直接写出DN平分△BCD面积时t的值.
如图,已知抛物线y=x2+bx+c交x轴正半轴于点A(4,0),交y轴于点B(0,-4). (1)求b、c的值; (2)若M为AB中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交x轴于点D,MQ交y轴于点E,设AD的长为m(m>0),BE的长为n,求n和m之间的函数关系式; (3)当m,n为何值时,∠PMQ的边经过抛物线与x轴的另一个交点.
如图,已知在等腰△ABC中,AB=AC=10,BC=12,点D为BC边上一动点(不与点B重合)过点D作射线交AB于点E ,∠BDE=∠A,以点D为圆心,DC的长为半径作⊙D. (1)设BD=x,AE=y,求y与x的函数关系式,并写出x的取值范围; (2)当 y =2时,判断⊙D与AB的位置关系,并说明理由.
在某次反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方2000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)
某工厂生产的某种产品按质量分为8个等级,第1等级(最低等级)的产品一天能生产85件,每件利润8元.每提高一个等级,每件利润增加2元,但一天产量减少5件. (1)若生产第x等级的产品一天的总利润为y元(其中x为正整数,且1≤x≤8),求出y关于x的函数关系式; (2)若生产第x等级的产品一天的总利润为900元,求该产品的质量等级.