已知函数·(其中>o),且函数的最小正周期为(I)求f(x)的最大值及相应x的取值(Ⅱ)将函数y= f(x)的图象向左平移单位长度,再将所得图象各点的横坐标缩小为原来的倍(纵坐标不变)得到函数y=g(x)的图象.求函数g(x)的单调区间.
已知函数在区间上的最大值是2,求实数的值.
已知,设命题:函数为减函数.命题:当时,函数恒成立.如果“p或q”为真命题,“p且q”为假命题,求c的取值范围.
数列满足(1)证明:数列是等差数列;(2)求数列的通项公式;(3)设,求数列的前项和.
已知a,b,c分别为△ABC三个内角A,B,C的对边,.(1)求A;(2)若△ABC的面积为,求bsinB+csinC的最小值.
已知等差数列的首项公差且分别是等比数列的(1)求数列和的通项公式;(2)设数列对任意正整数均有成立,求的值.