如图,一抛物线经过点A、B、C,点 A(−2,0),点B(0,4),点C(4,0),该抛物线的顶点为D.(1)求该抛物线的解析式及顶点D坐标;(2)如图,若P为线段CD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAB的面积的最大值和此时点P的坐标;(3)过抛物线顶点D,作DE⊥x轴于E点,F(m,0)是x轴上一动点,若以BF为直径的圆与线段DE有公共点,求m的取值范围.
解方程:.
化简或求值 (1) (2),其中a=﹣,b=1.
如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF. (1)判断四边形ADEF的形状,并证明你的结论; (2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?
已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1). (1)分别求出这两个函数的解析式; (2)当x取什么范围时,反比例函数值大于0; (3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值; (4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.
某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:
(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取? (2)若公司根据经营性质和岗位要求认为:面试成绩中形体占15%,口才占20%,笔试成绩中专业水平占40%,创新能力占25%,那么你认为该公司应该录取谁.