某仓库有甲种货物360吨,乙种货物290吨,计划用A、B两种共50辆货车运往外地.已知一辆A种货车的运费需0.5万元,一辆B种货车的运费需0.8万元.(1)设A种货车为辆,运输这批货物的总运费为y万元,试写出y与的关系表达式;(2)若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B种货车能装载甲种货物6吨和乙种货物8吨.按此要求安排A,B两种货车运送这批货物,有哪几种运输方案?请设计出来;(3)试说明哪种方案总运费最少?最少运费是多少万元?
如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动. (1)请在所给的图中,画出点A在正方形整个翻滚过程中所经过的路线图; (2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S. (3)若把正方形放在直线上,让纸片ABCD按上述方法旋转,请直接写出经过多少次旋转,顶点A经过的路程是.
如图,△ABC内接于⊙O,AD是⊙O直径,E是CB延长线上一点,且∠BAE=∠C. (1)求证:直线AE是⊙O的切线; (2)若EB=AB,,AE=24,求EB的长及⊙O的半径.
一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°, ∠E=45°,∠A=60°,AC=10,试求CD的长。
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系.设该圆弧所在圆的圆心为点D,连结AD、CD. 请完成下列问题: (1)出点D的坐标:D___________; (2)D的半径=_____(结果保留根号); (3)若扇形DAC是一个圆锥的侧面展开图,则该圆锥的底面面积为__________(结果保留π); (4)若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.
如图,在平行四边形ABCD中过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点且∠AFE=∠B. (1)求证:△ADF∽△DEC (2)若AB=4,AD=3,AE=3,求AF的长.